Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Nat Commun ; 13(1): 7003, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116500

ABSTRACT

Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Genome, Viral/genetics , COVID-19/epidemiology , Pandemics , Genomics
4.
Vaccine ; 39(2): 364-371, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-956593

ABSTRACT

Successful emergency vaccination campaigns rely on effective deployment and vaccination plans. This applies to localised outbreaks as well as for pandemics. In the wake of the 2009 H1N1 influenza pandemic, analysis of the global Vaccine Deployment Initiative, through which the World Health Organization (WHO) donated pandemic influenza vaccines to countries in need, revealed that an absence of vaccine deployment plans in many countries significantly hindered vaccine deployment. Through the Pandemic Influenza Preparedness Framework adopted by the World Health Assembly in 2011, WHO is engaging in several capacity building activities to improve pandemic influenza preparedness and response and make provisions for access to vaccines and sharing of other benefits. The Framework calls for the development and exercise of operational plans for deployment of influenza vaccines to enhance pandemic preparedness. To this end, WHO has supported the development of PIPDeploy, an interactive, in-person table top simulation exercise to facilitate learning for emergency preparedness. It employs various game design elements including a game board, time pressure, leaderboards and teams to enhance participants' motivation. PIPDeploy formed part of five WHO Pandemic Influenza Vaccine Deployment Workshops attended by national-level managers responsible for pandemic influenza vaccine response predominantly in non-producing countries. The purpose of this study was to describe the features and application of PIPDeploy, and present findings of the evaluation of participants' experiences during the simulation involving a "hot wash" discussion and collection of quantitative data. The simulation's instructional approach was widely accepted by participants, who reported that the format was novel and engaging. They reflected on its utility for identifying gaps in their own vaccine deployment plans and regulatory frameworks for importation of vaccine products. All participants found the simulation relevant to their professional objectives. A range of other potential applications were suggested, including PIPDeploy's adaptation to sub-national contexts and to other epidemic diseases.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Immunization Programs , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Vaccination
5.
BMJ Glob Health ; 5(10)2020 10.
Article in English | MEDLINE | ID: covidwho-932228

ABSTRACT

Process mapping is a systems thinking approach used to understand, analyse and optimise processes within complex systems. We aim to demonstrate how this methodology can be applied during disease outbreaks to strengthen response and health systems. Process mapping exercises were conducted during three unique emerging disease outbreak contexts with different: mode of transmission, size, and health system infrastructure. System functioning improved considerably in each country. In Sierra Leone, laboratory testing was accelerated from 6 days to within 24 hours. In the Democratic Republic of Congo, time to suspected case notification reduced from 7 to 3 days. In Nigeria, key data reached the national level in 48 hours instead of 5 days. Our research shows that despite the chaos and complexities associated with emerging pathogen outbreaks, the implementation of a process mapping exercise can address immediate response priorities while simultaneously strengthening components of a health system.


Subject(s)
Disease Outbreaks , Emergencies , Disease Outbreaks/prevention & control , Humans , Nigeria , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL